skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Queensland Museum"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Locomotor evolution in synapsids involved numerous functional shifts associated with the transition from sprawled to erect limb postures on the line to therian mammals. Given that bone structure frequently reflects functional requirements, this study investigated evolutionary changes in synapsid humerus and femur proportions as a lens to evaluate functional shifts through time. A total of 936 bones were measured, representing 330 species across the full 320+ million years of synapsid history. This dataset was used to test whether transformations in stylopod proportions are consistent with inferred changes in bone loading mechanics, alignment of joint and muscle forces, muscular control of the shoulder and hip, and differential support of body weight by the fore‐ and hindlimbs. As variation in bone dimensions may also correlate with bone or body size, this study first developed a novel approach for calculating species‐specific, size‐corrected measures of bone proportions. By disentangling the effect of body size from functional signals recorded in bone geometry, this then enabled a node‐to‐node appraisal of how bone allometry itself evolved through time. Ancestral state reconstruction of size‐corrected stylopod proportions reveals trends that broadly support many hypothesized shifts in locomotor biomechanics along the therian stem lineage. However, patterns of transformation are frequently complex, suggesting functional mosaicism, and stylopod proportions that typify therians as a whole are often not achieved until crown Theria itself. Several instances of temporary trend reversal are also inferred, particularly within non‐mammalian cynodonts, indicating greater functional or ecological diversification in this group. 
    more » « less
  2. The evolutionary transition from early synapsids to therian mammals involved profound reorganization in locomotor anatomy and function, centered around a shift from “sprawled” to “erect” limb postures. When and how this functional shift was accomplished has remained difficult to decipher from the fossil record alone. Through biomechanical modeling of hindlimb force-generating performance in eight exemplar fossil synapsids, we demonstrate that the erect locomotor regime typifying modern therians did not evolve until just before crown Theria. Modeling also identifies a transient phase of increased performance in therapsids and early cynodonts, before crown mammals. Further, quantifying the global actions of major hip muscle groups indicates a protracted juxtaposition of functional redeployment and conservatism, highlighting the intricate interplay between anatomical reorganization and function across postural transitions. We infer a complex history of synapsid locomotor evolution and suggest that major evolutionary transitions between contrasting locomotor behaviors may follow highly nonlinear trajectories. 
    more » « less
  3. Abstract This paper is the first in a two‐part series that charts the evolution of appendicular musculature along the mammalian stem lineage, drawing upon the exceptional fossil record of extinct synapsids. Here, attention is focused on muscles of the forelimb. Understanding forelimb muscular anatomy in extinct synapsids, and how this changed on the line to mammals, can provide important perspective for interpreting skeletal and functional evolution in this lineage, and how the diversity of forelimb functions in extant mammals arose. This study surveyed the osteological evidence for muscular attachments in extinct mammalian and nonmammalian synapsids, two extinct amniote outgroups, and a large selection of extant mammals, saurians, and salamanders. Observations were integrated into an explicit phylogenetic framework, comprising 73 character–state complexes covering all muscles crossing the shoulder, elbow, and wrist joints. These were coded for 33 operational taxonomic units spanning >330 Ma of tetrapod evolution, and ancestral state reconstruction was used to evaluate the sequence of muscular evolution along the stem lineage from Amniota to Theria. In addition to producing a comprehensive documentation of osteological evidence for muscle attachments in extinct synapsids, this work has clarified homology hypotheses across disparate taxa and helped resolve competing hypotheses of muscular anatomy in extinct species. The evolutionary history of mammalian forelimb musculature was a complex and nonlinear narrative, punctuated by multiple instances of convergence and concentrated phases of anatomical transformation. More broadly, this study highlights the great insight that a fossil‐based perspective can provide for understanding the assembly of novel body plans. 
    more » « less
  4. Abstract New Guinea has been considered both as a refuge for mesic rainforest-associated lineages that contracted in response to the late Cenozoic aridification of Australia and as a centre of biotic diversification and radiation since the mid-Miocene or earlier. Here, we estimate the diversity and a phylogeny for the Australo-Papuan forest dragons (Sauria: Agamidae; ~20 species) in order to examine the following: (1) whether New Guinea and/or proto-Papuan Islands may have been a biogeographical refuge or a source for diversity in Australia; (2) whether mesic rainforest environments are ancestral to the entire radiation, as may be predicted by the New Guinea refuge hypothesis; and (3) more broadly, how agamid ecological diversity varies across the contrasting environments of Australia and New Guinea. Patterns of lineage distribution and diversity suggest that extinction in Australia, and colonization and radiation on proto-Papuan islands, have both shaped the extant diversity and distribution of forest dragons since the mid-Miocene. The ancestral biome for all Australo-Papuan agamids is ambiguous. Both rainforest and arid-adapted radiations probably started in the early Miocene. However, despite deep-lineage diversity in New Guinea rainforest habitats, overall species and ecological diversity is low when compared with more arid areas, with terrestrial taxa being strikingly absent. 
    more » « less
  5. Abstract AimMesophotic coral ecosystems (MCEs) are unique communities that support a high proportion of depth‐endemic species distinct from shallow‐water coral reefs. However, there is currently little consensus on the boundaries between shallow and mesophotic coral reefs and between upper versus lower MCEs because studies of these communities are often site specific. Here, we examine the ecological evidence for community breaks, defined here as species loss, in fish and benthic taxa between shallow reefs and MCEs globally. LocationGlobal MCEs. Time period1973–2017. Major taxa studiedMacrophytes, Porifera, Scleractinia, Hydrozoa, Octocorallia, Antipatharia and teleost fishes. MethodsWe used random‐effects models and breakpoint analyses on presence/absence data to identify regions of higher than expected species loss along a depth gradient of 1–69 m, based on a meta‐analysis of 26 studies spanning diverse photoautotrophic and heterotrophic taxa. We then investigated the extent to which points of high faunal turnover can be explained by environmental factors, including light, temperature and nutrient availability. ResultsWe found evidence for a community break, indicated by a significant loss of shallow‐water taxa, at ~ 60 m across several taxonomically and functionally diverse benthic groups and geographical regions. The breakpoint in benthic composition is best explained by decreasing light, which is correlated with the optical depths between 10 and 1% of surface irradiance. A concurrent shift in the availability of nutrients, both dissolved and particulate organic matter, and a shift from photoautotroph to heterotroph‐dominated assemblages also occurs at ~ 60 m depth. Main conclusionsWe found evidence for global community breaks across multiple benthic taxa at ~ 60 m depth, indicative of distinct community transitions between shallow and mesophotic coral ecosystems. Changes in the underwater light environment and the availability of trophic resources along the depth gradient are the most parsimonious explanations for the observed patterns. 
    more » « less